1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
//! References to garbage-collected JavaScript values.
//!
//! A _handle_ is a safe reference to a JavaScript value that is owned and managed
//! by the JavaScript engine's memory management system (the garbage collector).
//!
//! Neon APIs that accept and return JavaScript values never use raw pointer types
//! ([`*T`](pointer)) or reference types ([`&T`](reference)). Instead they use the
//! special Neon type [`Handle`](Handle), which encapsulates a JavaScript
//! [`Value`](crate::types::Value) and ensures that Rust only maintains access to
//! the value while it is guaranteed to be valid.
//!
//! ## Working with Handles
//!
//! The `Handle<T>` type automatically dereferences to `T` (via the standard
//! [`Deref`](std::ops::Deref) trait), so you can call `T`'s methods on a value of
//! type `Handle<T>`. For example, we can call
//! [`JsNumber::value()`](crate::types::JsNumber::value) on a `Handle<JsNumber>`:
//!
//! ```
//! # use neon::prelude::*;
//! # fn run(mut cx: FunctionContext) -> JsResult<JsUndefined> {
//! let n: Handle<JsNumber> = cx.argument(0)?;
//! let v = n.value(&mut cx); // JsNumber::value()
//! # Ok(cx.undefined())
//! # }
//! ```
//!
//! ## Example
//!
//! This Neon function takes an object as its argument, extracts two properties,
//! `width` and `height`, and multiplies them together as numbers. Each JavaScript
//! value in the calculation is stored locally in a `Handle`.
//!
//! ```
//! # use neon::prelude::*;
//! fn area(mut cx: FunctionContext) -> JsResult<JsNumber> {
//!     let rect: Handle<JsObject> = cx.argument(0)?;
//!
//!     let width: Handle<JsNumber> = rect.get(&mut cx, "width")?;
//!     let w: f64 = width.value(&mut cx);
//!
//!     let height: Handle<JsNumber> = rect.get(&mut cx, "height")?;
//!     let h: f64 = height.value(&mut cx);
//!
//!     Ok(cx.number(w * h))
//! }
//! ```

pub(crate) mod internal;

pub(crate) mod root;

use std::{
    error::Error,
    fmt::{self, Debug, Display},
    marker::PhantomData,
    mem,
    ops::{Deref, DerefMut},
};

pub use self::root::Root;

use crate::{
    context::{internal::Env, Context},
    handle::internal::{SuperType, TransparentNoCopyWrapper},
    result::{JsResult, ResultExt},
    sys::{self, raw},
    types::Value,
};

/// The trait of data owned by the JavaScript engine and that can only be accessed via handles.
pub trait Managed: TransparentNoCopyWrapper {
    fn to_raw(&self) -> raw::Local;

    fn from_raw(env: Env, h: raw::Local) -> Self;
}

/// A handle to a JavaScript value that is owned by the JavaScript engine.
#[derive(Debug)]
#[repr(transparent)]
pub struct Handle<'a, T: Managed + 'a> {
    // Contains the actual `Copy` JavaScript value data. It will be wrapped in
    // in a `!Copy` type when dereferencing. Only `T` should be visible to the user.
    value: <T as TransparentNoCopyWrapper>::Inner,
    phantom: PhantomData<&'a T>,
}

impl<'a, T: Managed> Clone for Handle<'a, T> {
    fn clone(&self) -> Self {
        Self {
            value: self.value,
            phantom: PhantomData,
        }
    }
}

impl<'a, T: Managed> Copy for Handle<'a, T> {}

impl<'a, T: Managed + 'a> Handle<'a, T> {
    pub(crate) fn new_internal(value: T) -> Handle<'a, T> {
        Handle {
            value: value.into_inner(),
            phantom: PhantomData,
        }
    }
}

/// An error representing a failed downcast.
#[derive(PartialEq, Eq, PartialOrd, Ord, Clone)]
pub struct DowncastError<F: Value, T: Value> {
    phantom_from: PhantomData<F>,
    phantom_to: PhantomData<T>,
}

impl<F: Value, T: Value> Debug for DowncastError<F, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "DowncastError")
    }
}

impl<F: Value, T: Value> DowncastError<F, T> {
    fn new() -> Self {
        DowncastError {
            phantom_from: PhantomData,
            phantom_to: PhantomData,
        }
    }
}

impl<F: Value, T: Value> Display for DowncastError<F, T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
        write!(f, "failed to downcast {} to {}", F::name(), T::name())
    }
}

impl<F: Value, T: Value> Error for DowncastError<F, T> {}

/// The result of a call to [`Handle::downcast()`](Handle::downcast).
pub type DowncastResult<'a, F, T> = Result<Handle<'a, T>, DowncastError<F, T>>;

impl<'a, F: Value, T: Value> ResultExt<Handle<'a, T>> for DowncastResult<'a, F, T> {
    fn or_throw<'b, C: Context<'b>>(self, cx: &mut C) -> JsResult<'a, T> {
        match self {
            Ok(v) => Ok(v),
            Err(e) => cx.throw_type_error(&e.to_string()),
        }
    }
}

impl<'a, T: Value> Handle<'a, T> {
    /// Safely upcast a handle to a supertype.
    ///
    /// This method does not require an execution context because it only copies a handle.
    pub fn upcast<U: Value + SuperType<T>>(&self) -> Handle<'a, U> {
        Handle::new_internal(SuperType::upcast_internal(self.deref()))
    }

    /// Tests whether this value is an instance of the given type.
    ///
    /// # Example:
    ///
    /// ```no_run
    /// # use neon::prelude::*;
    /// # fn my_neon_function(mut cx: FunctionContext) -> JsResult<JsUndefined> {
    /// let v: Handle<JsValue> = cx.number(17).upcast();
    /// v.is_a::<JsString, _>(&mut cx); // false
    /// v.is_a::<JsNumber, _>(&mut cx); // true
    /// v.is_a::<JsValue, _>(&mut cx);  // true
    /// # Ok(cx.undefined())
    /// # }
    /// ```
    pub fn is_a<'b, U: Value, C: Context<'b>>(&self, cx: &mut C) -> bool {
        U::is_typeof(cx.env(), self.deref())
    }

    /// Attempts to downcast a handle to another type, which may fail. A failure
    /// to downcast **does not** throw a JavaScript exception, so it's OK to
    /// continue interacting with the JS engine if this method produces an `Err`
    /// result.
    pub fn downcast<'b, U: Value, C: Context<'b>>(&self, cx: &mut C) -> DowncastResult<'a, T, U> {
        match U::downcast(cx.env(), self.deref()) {
            Some(v) => Ok(Handle::new_internal(v)),
            None => Err(DowncastError::new()),
        }
    }

    /// Attempts to downcast a handle to another type, raising a JavaScript `TypeError`
    /// exception on failure. This method is a convenient shorthand, equivalent to
    /// `self.downcast::<U>().or_throw::<C>(cx)`.
    pub fn downcast_or_throw<'b, U: Value, C: Context<'b>>(&self, cx: &mut C) -> JsResult<'a, U> {
        self.downcast(cx).or_throw(cx)
    }

    pub fn strict_equals<'b, U: Value, C: Context<'b>>(
        &self,
        cx: &mut C,
        other: Handle<'b, U>,
    ) -> bool {
        unsafe { sys::mem::strict_equals(cx.env().to_raw(), self.to_raw(), other.to_raw()) }
    }
}

impl<'a, T: Managed> Deref for Handle<'a, T> {
    type Target = T;
    fn deref(&self) -> &T {
        unsafe { mem::transmute(&self.value) }
    }
}

impl<'a, T: Managed> DerefMut for Handle<'a, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { mem::transmute(&mut self.value) }
    }
}